3.7.41 \(\int \sqrt {\sec (c+d x)} (a+b \sec (c+d x))^{5/2} \, dx\) [641]

Optimal. Leaf size=314 \[ \frac {a \left (8 a^2+11 b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{4 d \sqrt {a+b \sec (c+d x)}}+\frac {b \left (15 a^2+4 b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{4 d \sqrt {a+b \sec (c+d x)}}-\frac {9 a b E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{4 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {9 a b \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 d}+\frac {b^2 \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d} \]

[Out]

1/4*a*(8*a^2+11*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(
a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)*sec(d*x+c)^(1/2)/d/(a+b*sec(d*x+c))^(1/2)+1/4*b*(15*a^2+4*b^2)*(co
s(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2)*(a/(a+b))^(1/2))*((b+a*co
s(d*x+c))/(a+b))^(1/2)*sec(d*x+c)^(1/2)/d/(a+b*sec(d*x+c))^(1/2)+1/2*b^2*sec(d*x+c)^(3/2)*sin(d*x+c)*(a+b*sec(
d*x+c))^(1/2)/d-9/4*a*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(
a/(a+b))^(1/2))*(a+b*sec(d*x+c))^(1/2)/d/((b+a*cos(d*x+c))/(a+b))^(1/2)/sec(d*x+c)^(1/2)+9/4*a*b*sin(d*x+c)*se
c(d*x+c)^(1/2)*(a+b*sec(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.71, antiderivative size = 314, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 13, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.520, Rules used = {3927, 4187, 4193, 3944, 2886, 2884, 4120, 3941, 2734, 2732, 3943, 2742, 2740} \begin {gather*} \frac {a \left (8 a^2+11 b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{4 d \sqrt {a+b \sec (c+d x)}}+\frac {b \left (15 a^2+4 b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{4 d \sqrt {a+b \sec (c+d x)}}+\frac {b^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}}{2 d}+\frac {9 a b \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}{4 d}-\frac {9 a b \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{4 d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x])^(5/2),x]

[Out]

(a*(8*a^2 + 11*b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]
])/(4*d*Sqrt[a + b*Sec[c + d*x]]) + (b*(15*a^2 + 4*b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c +
d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/(4*d*Sqrt[a + b*Sec[c + d*x]]) - (9*a*b*EllipticE[(c + d*x)/2, (2*a
)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(4*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x]]) + (9*a*b*Sqrt
[Sec[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(4*d) + (b^2*Sec[c + d*x]^(3/2)*Sqrt[a + b*Sec[c + d*x]]
*Sin[c + d*x])/(2*d)

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 3927

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-b^2)
*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*((d*Csc[e + f*x])^n/(f*(m + n - 1))), x] + Dist[1/(d*(m + n - 1)),
Int[(a + b*Csc[e + f*x])^(m - 3)*(d*Csc[e + f*x])^n*Simp[a^3*d*(m + n - 1) + a*b^2*d*n + b*(b^2*d*(m + n - 2)
+ 3*a^2*d*(m + n - 1))*Csc[e + f*x] + a*b^2*d*(3*m + 2*n - 4)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e,
 f, n}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 2] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&  !(IGtQ[n, 2] &&  !Int
egerQ[m])

Rule 3941

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3943

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3944

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[d*Sqrt
[d*Csc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/(Sin[e + f*x]*Sqrt[b + a*Sin[e + f
*x]]), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4120

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4187

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^(
m + 1)*((d*Csc[e + f*x])^(n - 1)/(b*f*(m + n + 1))), x] + Dist[d/(b*(m + n + 1)), Int[(a + b*Csc[e + f*x])^m*(
d*Csc[e + f*x])^(n - 1)*Simp[a*C*(n - 1) + (A*b*(m + n + 1) + b*C*(m + n))*Csc[e + f*x] + (b*B*(m + n + 1) - a
*C*n)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 0]

Rule 4193

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Dist[C/d^2, Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a +
 b*Csc[e + f*x]], x], x] + Int[(A + B*Csc[e + f*x])/(Sqrt[d*Csc[e + f*x]]*Sqrt[a + b*Csc[e + f*x]]), x] /; Fre
eQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \sqrt {\sec (c+d x)} (a+b \sec (c+d x))^{5/2} \, dx &=\frac {b^2 \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d}+\frac {1}{2} \int \frac {\sqrt {\sec (c+d x)} \left (\frac {1}{2} a \left (4 a^2+b^2\right )+b \left (6 a^2+b^2\right ) \sec (c+d x)+\frac {9}{2} a b^2 \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx\\ &=\frac {9 a b \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 d}+\frac {b^2 \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d}+\frac {\int \frac {-\frac {9}{4} a^2 b^2+\frac {1}{2} a b \left (4 a^2+b^2\right ) \sec (c+d x)+\frac {1}{4} b^2 \left (15 a^2+4 b^2\right ) \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{2 b}\\ &=\frac {9 a b \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 d}+\frac {b^2 \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d}+\frac {\int \frac {-\frac {9}{4} a^2 b^2+\frac {1}{2} a b \left (4 a^2+b^2\right ) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{2 b}+\frac {1}{8} \left (b \left (15 a^2+4 b^2\right )\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\\ &=\frac {9 a b \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 d}+\frac {b^2 \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d}-\frac {1}{8} (9 a b) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{8} \left (a \left (8 a^2+11 b^2\right )\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx+\frac {\left (b \left (15 a^2+4 b^2\right ) \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec (c+d x)}{\sqrt {b+a \cos (c+d x)}} \, dx}{8 \sqrt {a+b \sec (c+d x)}}\\ &=\frac {9 a b \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 d}+\frac {b^2 \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d}+\frac {\left (a \left (8 a^2+11 b^2\right ) \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{8 \sqrt {a+b \sec (c+d x)}}+\frac {\left (b \left (15 a^2+4 b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec (c+d x)}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{8 \sqrt {a+b \sec (c+d x)}}-\frac {\left (9 a b \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{8 \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}}\\ &=\frac {b \left (15 a^2+4 b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{4 d \sqrt {a+b \sec (c+d x)}}+\frac {9 a b \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 d}+\frac {b^2 \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d}+\frac {\left (a \left (8 a^2+11 b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{8 \sqrt {a+b \sec (c+d x)}}-\frac {\left (9 a b \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{8 \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}\\ &=\frac {a \left (8 a^2+11 b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{4 d \sqrt {a+b \sec (c+d x)}}+\frac {b \left (15 a^2+4 b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{4 d \sqrt {a+b \sec (c+d x)}}-\frac {9 a b E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{4 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {9 a b \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{4 d}+\frac {b^2 \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 16.32, size = 560, normalized size = 1.78 \begin {gather*} \frac {(a+b \sec (c+d x))^{5/2} \left (\frac {2 \left (16 a^3+4 a b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{\sqrt {b+a \cos (c+d x)}}+\frac {2 \left (21 a^2 b+8 b^3\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{\sqrt {b+a \cos (c+d x)}}-\frac {18 i a^2 \sqrt {\frac {a-a \cos (c+d x)}{a+b}} \sqrt {\frac {a+a \cos (c+d x)}{a-b}} \cos (2 (c+d x)) \left (-2 b (a+b) E\left (i \sinh ^{-1}\left (\sqrt {\frac {1}{a-b}} \sqrt {b+a \cos (c+d x)}\right )|\frac {-a+b}{a+b}\right )+a \left (2 b F\left (i \sinh ^{-1}\left (\sqrt {\frac {1}{a-b}} \sqrt {b+a \cos (c+d x)}\right )|\frac {-a+b}{a+b}\right )+a \Pi \left (1-\frac {a}{b};i \sinh ^{-1}\left (\sqrt {\frac {1}{a-b}} \sqrt {b+a \cos (c+d x)}\right )|\frac {-a+b}{a+b}\right )\right )\right ) \sin (c+d x)}{\sqrt {\frac {1}{a-b}} \sqrt {1-\cos ^2(c+d x)} \sqrt {\frac {a^2-a^2 \cos ^2(c+d x)}{a^2}} \left (-a^2+2 b^2-4 b (b+a \cos (c+d x))+2 (b+a \cos (c+d x))^2\right )}\right )}{16 d (b+a \cos (c+d x))^{5/2} \sec ^{\frac {5}{2}}(c+d x)}+\frac {(a+b \sec (c+d x))^{5/2} \left (\frac {9}{4} a b \tan (c+d x)+\frac {1}{2} b^2 \sec (c+d x) \tan (c+d x)\right )}{d (b+a \cos (c+d x))^2 \sec ^{\frac {5}{2}}(c+d x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x])^(5/2),x]

[Out]

((a + b*Sec[c + d*x])^(5/2)*((2*(16*a^3 + 4*a*b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (
2*a)/(a + b)])/Sqrt[b + a*Cos[c + d*x]] + (2*(21*a^2*b + 8*b^3)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticPi[
2, (c + d*x)/2, (2*a)/(a + b)])/Sqrt[b + a*Cos[c + d*x]] - ((18*I)*a^2*Sqrt[(a - a*Cos[c + d*x])/(a + b)]*Sqrt
[(a + a*Cos[c + d*x])/(a - b)]*Cos[2*(c + d*x)]*(-2*b*(a + b)*EllipticE[I*ArcSinh[Sqrt[(a - b)^(-1)]*Sqrt[b +
a*Cos[c + d*x]]], (-a + b)/(a + b)] + a*(2*b*EllipticF[I*ArcSinh[Sqrt[(a - b)^(-1)]*Sqrt[b + a*Cos[c + d*x]]],
 (-a + b)/(a + b)] + a*EllipticPi[1 - a/b, I*ArcSinh[Sqrt[(a - b)^(-1)]*Sqrt[b + a*Cos[c + d*x]]], (-a + b)/(a
 + b)]))*Sin[c + d*x])/(Sqrt[(a - b)^(-1)]*Sqrt[1 - Cos[c + d*x]^2]*Sqrt[(a^2 - a^2*Cos[c + d*x]^2)/a^2]*(-a^2
 + 2*b^2 - 4*b*(b + a*Cos[c + d*x]) + 2*(b + a*Cos[c + d*x])^2))))/(16*d*(b + a*Cos[c + d*x])^(5/2)*Sec[c + d*
x]^(5/2)) + ((a + b*Sec[c + d*x])^(5/2)*((9*a*b*Tan[c + d*x])/4 + (b^2*Sec[c + d*x]*Tan[c + d*x])/2))/(d*(b +
a*Cos[c + d*x])^2*Sec[c + d*x]^(5/2))

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.19, size = 1982, normalized size = 6.31

method result size
default \(\text {Expression too large to display}\) \(1982\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(1/2)*(a+b*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/4/d*(9*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-
b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*sin(d*x+c)*cos(d*x+c)^3*a^2*b-9*((b+a*cos(d*x+c))/(1+cos(d*x+
c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-
b))^(1/2))*sin(d*x+c)*cos(d*x+c)^3*a*b^2-30*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(
1/2)*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*cos(d*x+c)^3
*sin(d*x+c)*a^2*b-8*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticPi((-1+cos(
d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*cos(d*x+c)^3*sin(d*x+c)*b^3-8*((b+a*
cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)*cos(d*x+c)^3*EllipticF((-1+cos(d*x
+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^3+6*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*
(1/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)*cos(d*x+c)^3*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a
+b)/(a-b))^(1/2))*a^2*b-2*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)*co
s(d*x+c)^3*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b^2+4*((b+a*cos(d*
x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d
*x+c),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)^3*sin(d*x+c)*b^3+9*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+
cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)^2
*sin(d*x+c)*a^2*b-9*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d
*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)^2*sin(d*x+c)*a*b^2-30*((b+a*cos(d*x+c))
/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c
),(a+b)/(a-b),I/((a-b)/(a+b))^(1/2))*cos(d*x+c)^2*sin(d*x+c)*a^2*b-8*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(
1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-b)/(
a+b))^(1/2))*cos(d*x+c)^2*sin(d*x+c)*b^3-8*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1
/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)^2*sin(d*x+c)*a^3
+6*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+
b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)^2*sin(d*x+c)*a^2*b-2*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a
+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1
/2))*cos(d*x+c)^2*sin(d*x+c)*a*b^2+4*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*El
lipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)^2*sin(d*x+c)*b^3-9*cos
(d*x+c)^3*((a-b)/(a+b))^(1/2)*a^2*b-2*cos(d*x+c)^3*((a-b)/(a+b))^(1/2)*a*b^2+9*cos(d*x+c)^2*((a-b)/(a+b))^(1/2
)*a^2*b-9*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a*b^2-2*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*b^3+11*cos(d*x+c)*((a-b)/(
a+b))^(1/2)*a*b^2+2*((a-b)/(a+b))^(1/2)*b^3)*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(1/cos(d*x+c))^(1/2)/(b+a*cos
(d*x+c))/cos(d*x+c)/sin(d*x+c)/((a-b)/(a+b))^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)*(a+b*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)^(5/2)*sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)*(a+b*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(1/2)*(a+b*sec(d*x+c))**(5/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 4369 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)*(a+b*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)^(5/2)*sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int {\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{5/2}\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b/cos(c + d*x))^(5/2)*(1/cos(c + d*x))^(1/2),x)

[Out]

int((a + b/cos(c + d*x))^(5/2)*(1/cos(c + d*x))^(1/2), x)

________________________________________________________________________________________